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Abstract. Many problems in engineering and physics require the solution of a large sequence of
linear systems. We can reduce the cost of solving subsequent systems in the sequence by recycling
information from previous systems. We overview two different approaches. For several model prob-
lems, we demonstrate that we can reduce the iteration count required to solve a linear system by
a factor of two. We consider both Hermitian and non-Hermitian problems, and present numerical
experiments to illustrate the effects of subspace recycling.
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1. Introduction. We consider the solution of a sequence of general linear sys-
tems

A(i)x(i) = b(i), i = 1, 2, . . . , (1.1)

where the matrix A(i) ∈ C
n×n and right hand side b(i) ∈ C

n change from one system to
the next, and are typically not available simultaneously. Such sequences arise in many
problems, such as Newton or Broyden-type methods for solving nonlinear equations.
They also occur in modeling fatigue and fracture via finite element analysis. These
analyses use dynamic loading, requiring many loading steps, and rely on implicit
solvers [14]. Generally, several thousand loading increments are required to resolve
the fracture progression. The matrix and right hand side, at each loading step, depend
on the previous solution, so that only one linear system is available at a time. We are
interested in retaining a subspace determined while solving previous systems and use
it to reduce the cost of solving the next system. We refer to this process as Krylov

subspace recycling.
For the Hermitian positive definite case, Rey and Risler have proposed to reduce

the effective condition number by retaining all converged Ritz vectors arising in a
previous CG iteration [24, 25, 26]. In general, this requires significant storage. More-
over, memory-wise, they lose the advantage of a short recurrence, as they keep the
full recurrence during the solution of a single system. Since they focus on the finite
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element tearing and interconnecting (FETI) method [11], it is less of a drawback, be-
cause the interface problem is small relative to the overall problem, and it is common
to use a full recurrence in FETI. The two Galerkin projection methods developed
by Chan and Ng [3] could also be used. These methods require all systems to be
available simultaneously, or at least the right hand sides. Moreover, they focus on
situations where all the matrices are very close. However, for the problems we target,
the matrices change only slowly, but the incremental change over many steps can be
significant.

Solving a sequence of linear systems where the matrix is invariant is a special case
of (1.1). When all right hand sides are available simultaneously, block methods such
as block CG [23], block GMRES [34], and the family of block EN-like methods [35]
are often suitable. However, block methods do not generalize to the case (1.1). If only
one right hand side is available at a time, the method of Fischer [12], the deflated
conjugate gradient method (deflated CG) [29], or the hybrid method of Simoncini
and Gallopoulos [30] may be employed. Fischer’s method first looks for a solution
in the space spanned by the previous solution vectors in the sequence, which is only
helpful if the solution vectors are correlated. In deflated CG, only a small number
of the initial Lanczos vectors for every system are used to update the approximate
invariant subspace. This is efficient, both in computation and memory use, but the
convergence to an invariant subspace is slow. Hence, the improvement in iterations
is modest. The hybrid method of Simoncini and Gallopoulos is most effective only
when the right hand sides share common spectral information.

When solving (1.1), we should consider:

1. Which subspace should be recycled for the next system?
2. How should it be used?

We discuss two answers to the first question. One idea is to recycle an approximate
invariant subspace and use it for deflation. Clearly, reducing the effective condition
number of a matrix may speed convergence. An alternative idea is to recycle a sub-
space that minimizes the loss of orthogonality with the Krylov subspace from the
previous system [6]. We elaborate on the latter choice in section 2.3.

We discuss three answers to the second question. We refer to these approaches
as:

• augmentation,
• orthogonalization,
• preconditioning.

In an augmentation approach, we append additional vectors at the end of the Arnoldi
recurrence, in the manner of FGMRES, such that an Arnoldi-like relation is formed
[27]. In an orthogonalization approach, we first minimize the residual over the recy-
cled subspace, and then maintain orthogonality with the image of this space in the
Arnoldi recurrence. In a preconditioning approach, we construct preconditioners that
shift eigenvalues [1, 10]. When using exactly invariant subspaces, an augmentation
approach is superior to a preconditioning approach [8]. Hence, we consider only the
augmentation and orthogonalization approaches.

In secton 2, we discuss several truncated or restarted linear solvers that use the
ideas above to reduce the total number of iterations for solving a sequence of linear
systems. We define a cycle as the computation between truncations or restarts. Sub-
spaces that are useful to retain for a subsequent cycle when solving a single linear
system may also be useful for subsequent linear systems in a sequence, especially if
the matrix does not change significantly. Therefore, we consider linear solvers that
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retain a carefully selected subspace after each cycle. Several such solvers have been
proposed. We consider Morgan’s GMRES-DR [22] and de Sturler’s GCROT [6], and
modify GCROT to recycle subspaces between linear systems. GMRES-DR cannot
be modified to do this, so we introduce GCRO-DR, a flexible variant of GMRES-DR
capable of Krylov subspace recycling.

In section 3, we introduce several test problems, including both realistic problems
taken from engineering and physics, as well as a problem constructed explicitly for
analysis of subspace recycling. In section 4, we give the experimental results, which
show that recycling can be very beneficial. Conclusions and future work are given in
section 5.

2. Truncated and Augmented Krylov Methods. Restarting GMRES [28]
may lead to poor convergence and even stagnation. Therefore, recent research has
focused on truncated methods that improve convergence by retaining a carefully se-
lected subspace between cycles. A taxonomy of popular choices is given in [8]. In this
section, we discuss those choices and solvers implementing them. We then investigate
how those solvers might be modified to recycle subspaces between linear systems.

Morgan’s GMRES-DR and GMRES-E [20] retain an approximately invariant sub-
space between cycles. In particular, both methods focus on removing the eigenvalues
of smallest magnitude, and retain a subspace spanned by approximate eigenvectors
associated with those eigenvalues. GMRES-E uses an augmentation approach, which
was analyzed in [27]. In contrast, GMRES-DR uses an orthogonalization approach.
Despite these differences, GMRES-E and GMRES-DR generate the same Krylov sub-
space at the end of each cycle if they retain the same harmonic Ritz vectors; see
[20, 22]. Although GMRES-E retains the same subspace between cycles as GMRES-
DR, GMRES-E can be modified to select any subspace, whereas GMRES-DR cannot.
Thus, GMRES-E is suitable for Krylov subspace recycling between systems, as in
(1.1). GMRES-DR cannot be modified for Krylov subspace recycling, even when the
matrix does not change. We discuss GMRES-E and GMRES-DR further in section
2.4. Because GMRES-DR cannot be used for Krylov subspace recycling, we combine
ideas from GCRO [5] and GMRES-DR to produce a new linear solver, GCRO-DR.
GCRO-DR is suitable for the solution of individual linear systems as well as sequences
of them, and is more flexible than GMRES-DR. We discuss GCRO-DR in section 2.5.
In section 2.6 we give some analysis suggesting why recycling nearly invariant sub-
spaces may improve convergence.

Another strategy for subspace selection was proposed in [6] and was used for the
GCROT method, an extension of GCRO. We discuss this approach, and its modifi-
cation towards solving (1.1) in section 2.3.

We first review some definitions.

2.1. Definitions. The Arnoldi recurrence in GMRES leads to the following re-
lation, which we denote as the Arnoldi relation.

AVm = Vm+1Hm, (2.1)

where Vm ∈ C
n×m, and Hm ∈ C

(m+1)×m is upper Hessenberg. Let Hm ∈ C
m×m

denote the first m rows of Hm.

For any subspace S ⊆ C
n, y ∈ S is a Ritz vector of A with Ritz value θ if

Ay − θy ⊥ w, ∀w ∈ S. (2.2)
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Frequently, we choose S = K(j)(A, r), the jth Krylov subspace associated with the
matrix A and the starting vector r. In this case the eigenvalues of Hm are the Ritz
values of A.

Ritz values tend to approximate the extremal eigenvalues of A well, but can give
poor approximations to the interior eigenvalues. Likewise, the Ritz values of A−1 tend
to approximate the interior eigenvalues of A. We define harmonic Ritz values as the
Ritz values of A−1 with respect to the space AS,

A−1ỹ − µ̃ỹ ⊥ w ∀w ∈ AS, (2.3)

where again S = K(j)(A, r), and ỹ ∈ AS. We call θ̃ = 1/µ̃ a harmonic Ritz value.
In this case, we have approximated the eigenvalues of A−1, but using a Krylov space
generated with A.

2.2. GMRES and GCR. We now review the linear solvers GMRES [28] and
GCR [9], which form the basis for the linear solvers we discuss later. The Arnoldi
iteration is the core of GMRES. When solving Ax = b with GMRES, we start with
an initial guess x0 ∈ C

n and compute the initial residual r0 = b − Ax0. Let the
first Arnoldi vector be v1 = r0/‖r0‖2. We proceed with m Arnoldi iterations to
form relation (2.1) with range(Vm) = Km(A, r0). Then, we solve min ‖c − Hmd‖2

for d ∈ C
m, where c = ‖r0‖2e1. Finally, we form the new approximate solution,

xm = x0 + Vmd. GMRES solves the least squares problem A(x0 + Vmd) ≈ r0 for d.
So, rm ⊥ AK(m)(A, r0).

The linear solver GCR is algebraically equivalent to GMRES, but requires more
storage, as it keeps separate bases for K(m)(A, r0) and AK(m)(A, r0). GCR maintains
the matrices Um, Cm ∈ C

n×m, so that

range(Um) = K(m)(A, r0), (2.4)

AUm = Cm, (2.5)

CH
mCm = Im. (2.6)

We solve the minimization problem min ‖r0 − AUmd‖2 for d ∈ C
m, and compute the

solution as xm = x0 + Umd = x0 + UmCH
mr0, and residual as rm = r0 − CmCH

mr0 ⊥
AK(m)(A, r0). The relations (2.5)-(2.6) still hold if range(Um) is not a Krylov space,
allowing us to find the minimum residual solution over any subspace range(Um). In
this case the method would not be called GCR, but the relations (2.5)-(2.6) are still
valid.

2.3. GCROT. GCROT is a truncated minimum residual Krylov method that
retains a subspace between cycles such that the loss of orthogonality with respect to
the truncated space is minimized. This process is called optimal truncation.

We discuss the idea of optimal truncation in the context of restarted GMRES,
although it can be described in more general terms, and independently of any specific
linear solver [6, 18]. Consider solving Ax = b with initial residual r0. The idea is
to determine, after each cycle, a subspace to retain for the next cycle in order to
maintain good convergence after the restart. At the end of the first cycle of GMRES,
starting with v1 = r0/‖r0‖2, we have the Arnoldi relation (2.1).

Let r1 denote the residual vector after m iterations. Consider some iteration
s < m. After s iterations of GMRES, we have the Arnoldi relation

AVs = Vs+1Hs. (2.7)
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Let r denote the residual after s iterations. Now suppose that we had restarted after
iteration s, with initial residual r, and made m − s iterations, yielding residual r2.
The optimal residual after m iterations is r1. At best, we may have ‖r2‖2 = ‖r1‖2,
but in general, ‖r2‖2 > ‖r1‖2, because GMRES restarted after iteration s ignores
orthogonality to the Krylov subspace AK(s)(A, r0). The deviation from optimality
incurred by restarting after iteration s is e = r2 − r1, which we call the residual error.
The residual error e depends on the principal angles [13, pp. 603–4] between the two
subspaces AK(s)(A, r0) and AK(m−s)(A, r). Optimal truncation involves selecting
and retaining a k-dimensional subspace of AK(s)(A, r0) such that the magnitude of
the residual error ‖e‖2 = ‖r1 − r2‖2, is minimized. The complement of that subspace
is discarded. Since the Krylov space generated with r contained vectors close to the
recycled subspace, this is likely to happen again after restarting with r1. Therefore,
we retain the selected k-dimensional subspace for the next cycle.

GCROT maintains matrices Uk and Ck satisfying the relations (2.5)-(2.6). The
minimum residual solution over range(Uk) is known from the previous cycle. In the
following cycle, we carry out the Arnoldi recurrence while maintaining orthogonality
to Ck. This corresponds to an Arnoldi recurrence with the operator (I − CkCH

k )A.
Then we compute the update to the solution as in GMRES, but we take the singularity
of the operator into account. Hence, GCROT uses an orthogonality approach. The
correction to the solution vector and other vectors selected via optimal truncation
of the Krylov subspace are appended to Uk, and then Uk and Ck are updated such
that (2.5)-(2.6) again hold. At the end of each cycle, only the matrices Uk and Ck

are carried over to the next cycle. Each cycle of GCROT requires approximately
m − k matrix-vector products and O(nm2 + nkm) other floating point operations.
For details, see [6].

GCROT can be modified to solve (1.1) by carrying over Uk from the ith system
to the (i+1)st system. After we solve the ith system A(i)x(i) = b(i) with GCROT, we
have the relation A(i)Uk = Ck. We must modify Uk and Ck so that (2.5)-(2.6) hold
with respect to A(i+1), which we do as follows:

1: [Q,R] = reduced QR decomposition of A(i+1)Uold
k

2: Cnew
k = Q

3: Unew
k = Uold

k R−1

Now, A(i+1)Unew
k = Cnew

k , and we can proceed with GCROT on the system A(i+1)x(i+1) =
b(i+1). Note that in many cases computing A(i+1)Uold

k = Cold
k + ∆A(i)Uold

k is much

cheaper than k matrix-vector products, because ∆A(i) is considerably sparser than
A(i) or has a special structure. See our example problem in section 3.1. Moreover,
even if we were to compute A(i+1)Uold

k directly, this can be faster than k separate
matrix-vector multiplications [7]. So long as A(i+1) has not changed significantly
from A(i), the use of Unew

k should accelerate the solution of the i + 1st linear system.

2.4. GMRES-DR and GMRES-E. GMRES-DR and GMRES-E rely on spec-
tral or nearly invariant subspace information, rather than orthogonality constraints.
Removing or deflating certain eigenvalues can greatly improve convergence. Based
on this idea, Morgan has proposed three linear solvers (GMRES-E, GMRES-IR [21],
and GMRES-DR) that aim to deflate the eigenvalues of smallest magnitude. How-
ever, these solvers can be changed to deflate other eigenvalues. We consider only
GMRES-E and GMRES-DR.
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GMRES-E (GMRES with eigenvectors) appends harmonic Ritz vectors after the
Arnoldi recurrence, resulting in the Arnoldi-like relation

A[Vm−k Ỹk] = VmHm, (2.8)

where v1 = r0/‖r0‖, Ỹk = [ỹ1, ỹ2, . . . , ỹk] contains the k harmonic Ritz vectors from
the previous cycle, and where the last k columns of Vm are formed by orthogonalizing
the vectors Aỹi, for i = 1 . . . k, against the previous columns of Vm. For the first
cycle, the harmonic Ritz vectors can be computed from Hm in (2.1). It can be shown
that the augmented subspace

span{r0, Ar0, A
2r0, . . . , A

m−k−1r0, ỹ1, ỹ2, . . . , ỹk} (2.9)

is itself a Krylov subspace, but with another starting vector [21].
GMRES-DR is algebraically equivalent to GMRES-E at the end of each cycle if

both select the same harmonic Ritz vectors. Because (2.9) is a Krylov subspace, it
means that the harmonic Ritz vectors can go first, rather than being appended at the
end. It was shown in [21] that the subspace

span{ỹ1, ỹ2, . . . , ỹk, Aỹi, A
2ỹi, . . . , A

m−kỹi} (2.10)

is identical to subspace (2.9) for 1 ≤ i ≤ k. In one cycle, GMRES-DR first orthogo-

nalizes Ỹk, giving Υ̃k. Then GMRES-DR carries out the Arnoldi recurrence for m−k
iterations while maintaining orthogonality to Υ̃k. This gives the Arnoldi-like relation

A[Υ̃k Vm−k] = [Υ̃k Vm−k+1]Hm, (2.11)

where Hm is upper Hessenburg, except for a leading dense (k+1)×(k+1) submatrix.
It updates the solution and residual as in GMRES. It then computes the harmonic Ritz
vectors associated with the k smallest harmonic Ritz values using (2.11), and finally
restarts with those vectors. Note that each column vector in Vm−k is orthogonal to

range(Ỹk) in GMRES-DR, but this is not true in GMRES-E.
GMRES-DR cannot be directly used to solve (1.1), even if the matrix is invari-

ant. The harmonic Ritz vectors of A in Ỹk do not form a Krylov subspace for another
matrix or even just another starting vector. However, Morgan discusses in [22] a
modification to GMRES-DR that can be used for the case of multiple right hand
sides. Standard GMRES-DR is run for the first right hand side, and the approximate
eigenvectors are retained. For subsequent right hand sides, restarted GMRES is used.
Between cycles of restarted GMRES, the minimum residual solution over the space
spanned by the approximate eigenvectors is found, and the solution and residual vec-
tors updated accordingly. However, the approximate eigenvectors are never updated.
We expect this process may suffer the same difficulties as restarted GMRES, such
as poor convergence or stagnation. Additionally, for nonsymmetric problems, setting
the residual orthogonal to an invariant subspace does not remove that subspace from
the residual, which may result in poor convergence.

Because GMRES-E takes an augmentation approach, it can be used when solving
(1.1). After the solution of the ith linear system, we could run GMRES on the
i + 1st linear system for m − k steps, then append the k approximate eigenvectors
from the ith linear system to the Arnoldi basis vectors, and then proceed as normal
with GMRES-E. This would form the subspace (2.9) for the matrix A(i+1), which

is not a Krylov subspace. Note that breakdown can occur if a subspace of Ỹk is



KRYLOV SUBSPACE RECYCLING 7

contained in the Krylov subspace generated first. We observed this when GMRES-
E was run on the example problem in section 3.1. Because GMRES-E extends the
search space as restarted GMRES, it may suffer from stagnation. Further, the Krylov
subspace generated by GMRES-E ignores the orthogonality to range(A(i+1)Ỹk) and

thus considers corrections in range(Ỹk) even though the residual is already orthogonal

to range(A(i+1)Ỹk). Although GMRES-E can be used when solving (1.1), because
of these problems, we do not consider it further. Based on experiments, we believe
that it is preferable to preserve orthogonality to range(A(i+1)Ỹk). The linear solver
GCRO-DR, discussed next, accomplishes this.

2.5. GCRO-DR. We introduce a new Krylov method that retains a subspace
between restarts. We call this method GCRO-DR because it uses deflated restarting
within the framework of GCRO [5]. The method is a generalization of GMRES-DR
to solve (1.1). GCRO-DR is more flexible because any subspace may be retained
for subsequent cycles, and also between linear systems. In the pseudocode given in
the appendix, the harmonic Ritz vectors corresponding to the harmonic Ritz values
of smallest magnitude have been chosen. However, any combination of k vectors
may be selected. An interesting possibility would be to select a few harmonic Ritz

vectors corresponding to the harmonic Ritz values of smallest magnitude, and a few
Ritz vectors corresponding to the Ritz values of largest magnitude. This would allow
simultaneous deflation of eigenvalues of both smallest and largest magnitude using
the better approximation for each.

When solving a single linear system, GCRO-DR and GMRES-DR are algebraically
equivalent. The primary advantage of GCRO-DR is its capability to solve sequences
of linear systems.

Suppose that we solved the ith system of (1.1) with GCRO-DR. We retain k ap-

proximate eigenvectors, Ỹk = [ỹ1, ỹ2, . . . , ỹk]. GCRO-DR maintains matrices Uk, Ck ∈
C

n×k such that

A(i+1)Uk = Ck, (2.12)

CH
k Ck = Ik, (2.13)

where Uk and Ck are determined from Ỹk and A(i+1) as follows.

1: [Q,R] = reduced QR decomposition of A(i+1)Ỹk

2: Ck = Q
3: Uk = ỸkR−1

We find the optimal solution over the subspace range(Uk) as x = x0 + UkCH
k r0, and

set r = r0−CkCH
k r0, and v1 = r/‖r‖2. We next generate a Krylov space of dimension

m − k + 1 with (I − CkCH
k )A(i+1), which produces the Arnoldi relation

(I − CkCH
k )A(i+1)Vm−k = Vm−k+1Hm−k. (2.14)

Each of the Arnoldi vectors Vm−k+1 = [v1, v2, . . . , vm−k+1] is orthogonal to range(Ck).
We can rewrite (2.14) as

A[Uk Vm−k] = [Ck Vm−k+1]

[
Ik Bk

0 Hm−k

]
(2.15)

where Bm−k = CH
k AVm−k. For numerical reasons, we normalize the column vectors

of Uk and replace the identity matrix Ik above with a diagonal matrix Dk, such
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that UkDk has unit columns. We denote the rescaled Uk as Ũk. Now, the columns
of [Ũk Vm−k] and [Ck Vm−k+1] have unit norm, which ensures that the rightmost
matrix in (2.15) is not unnecessarily ill-conditioned. This improves the accuracy of
the numerical solution.

We define

V̂m = [Ũk Vm−k], Ŵm+1 = [Ck Vm−k+1], Gm =

[
Dk Bk

0 Hm−k

]
,

and write (2.15) more compactly, as

AV̂m = Ŵm+1Gm. (2.16)

Note that Gm = ŴH
m+1AV̂m is upper Hessenberg, with D diagonal. The columns of

Ŵm+1 are orthogonal, but this is not true for the columns of V̂m.
At each cycle, GCRO-DR solves the minimization problem

t = arg min
z∈ range(V̂m)

‖r − Az‖2, (2.17)

which reduces to the (m+1) × m least squares problem

Gmy ∼= ŴH
m+1r = ‖r‖2ek+1, (2.18)

with t = V̂my. The residual and solution are given by

r = r − AV̂my = r − Ŵm+1Gmy, (2.19)

x = x + V̂my. (2.20)

To compute new harmonic Ritz vectors the method solves the generalized eigen-
value problem

G
H

mGmz̃i = θ̃iG
H

mŴH
m+1V̂mz̃i, (2.21)

derived from (2.3), and recovers the harmonic Ritz vectors as ỹi = V̂mz̃i.
Computationally, GCRO-DR and GMRES-DR use the same number of matrix-

vector products per cycle, although a matrix-vector product for GCRO-DR is slightly
more expensive, as a modified operator is used. If f is the average number of nonzeros
per row in A(i), then the cost of a matrix-vector product for GMRES-DR is 2fn, and
2fn+4kn for GCRO-DR, where k � n. The additional 4kn is the cost orthogonalizing
against Ck. Both GCRO-DR and GMRES-DR solve a small m×m eigenvalue problem
each cycle. GMRES-DR orthonormalizes k + 1 vectors of length m + 1 while GCRO-
DR finds the QR-factorization of a small (m + 1) × m matrix. Finally, GMRES-DR
stores k fewer vectors.

2.6. Recycling Invariant Subspaces. When recycling nearly invariant sub-
spaces, we show a residual bound demonstrating improved convergence under certain
assumptions. The following theorem is adapted to our purpose from [31], which was
in turn inspired by [27].

Theorem 2.1. Let range(Qk) be a k-dimensional invariant subspace of A ∈
C

n×n. Let PQ be the spectral projector onto range(Qk). Let range(Yk) be a k-

dimensional subspace close to range(Qk). Let PAY be the orthogonal projector onto



KRYLOV SUBSPACE RECYCLING 9

range(AYk). Let range(Xj) be a j-dimensional Krylov subspace. Let r0 ∈ C
n,

d∗ = arg mind∈range(AYk) ‖r0 − d‖2, and r1 = r0 − d∗. Then,

min
d1∈range([AXj ,AYk])

‖r0 − d1‖2 ≤

min
d2∈range(AXj)

{‖(I − PQ)(r1 − d2)‖2 + γ‖PQ(r1 − d2)‖2},

where γ = ‖(I − PAY )PQ‖2.

Proof. See Theorem 2.1 in [31].
Theorem 2.1 in [31] is used to explain superlinear convergence in GMRES as

follows. If the Krylov subspace generated by GMRES contains a nearly invariant
subspace of range(A), then the GMRES iteration acts nearly as if the residual vector
has no components in the associated invariant subspace, resulting in an increased rate
of convergence. Our use of the proof is similar, except that we begin our iteration
by optimizing over a nearly invariant subspace (recycled from the previous linear
system). In the context of the methods we have discussed, we can consider range(Qk)
to span an invariant subspace of A close to the selected k-dimensional approximate
invariant subspace, and Yk to represent the k approximate eigenvectors recycled from
the previous system. In the ideal case, range(Qk) = range(AYk). The term ‖(I −
PQ)(r1−d2)‖2 represents the residual norm achieved by j steps of a Krylov method if
the residual r1 had no components in range(Qk), and the term γ‖PQ(r1 − d2)‖2 will
be small if range(Qk) is sufficiently close to range(AYk) [31]. We observe that for
GCRO-DR, the Krylov subspace range(Xj) is not Xj = K(j)(A, r0), but is instead
Xj = K(j)((I − PAY )A, (I − PAY )r0).

3. Test Problems. We discuss our main example in section 3.1, a problem from
fracture mechanics that produces a large sequence of linear systems. The matrices are
symmetric positive definite (SPD), and both the matrix and right hand side change
from one system to the next. As these systems are SPD, we also provide results for
three problems that involve real nonsymmetric matrices and complex non-Hermitian
matrices. To illustrate the effectiveness of our approach for the case of an invariant
matrix, we consider two examples from physics. We discuss electronic structure cal-
culations in section 3.2, and a problem from lattice QCD in section 3.3. Finally, in
section 3.4, we apply the two main approaches we have discussed to a simple con-
vection diffusion problem. We use this example to explore the effects of subspace
recycling in the nonsymmetric case, independently from perturbations in the matrix
or right hand side. We show all methods for the main example, but for brevity we
show only selected methods for the remaining problems. Computational results are
presented in section 4.

3.1. Fatigue and fracture of engineering components. Research on failure
mechanisms (e.g. fatigue and fracture) of engineering components often focuses on
modeling complex, nonlinear response. Finite element methods for quasi-static and
transient responses over longer time scales generally adopt an implicit formulation.
Together with a Newton scheme for the nonlinear equations, such implicit formulations
require the solution of linear systems, thousands of times, to accomplish a realistic
analysis [14].

We study a sequence of linear systems taken from a finite element code developed
by Philippe Geubelle and Spandan Maiti (both Aeronautical and Astronautical Engi-
neering, UIUC). The code simulates crack propagation in a metal plate using so-called
“cohesive finite elements”. The plate mesh is shown in Figure 3.1. The problem is
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Fig. 3.1. 2D plate mesh for crack propagation problem.

symmetric about the x-axis, and in this problem the crack propagates exactly along
this symmetry axis. The cohesive elements act as nonlinear springs connecting the
surfaces that will define the crack location. As the crack propagates the cohesive ele-
ments deform following a nonlinear yield curve, and eventually break. These elements
are usually inserted dynamically, although that is not the case here. The element stiff-
ness is set to zero for a broken cohesive element. This results in a sequence of sparse,
symmetric positive definite, stiffness matrices that change slowly from one system to
the next. Each stiffness matrix can be expressed as A(i+1) = A(i) + ∆A(i). Although
∆A(i) is considerably more sparse than A(i), it is not low-rank, as the terms in the
update ∆A(i) come from the cohesive elements. The other finite elements model linear
elasticity and have constant stiffness matrices. The matrices produced in our exam-
ples are 3988 × 3988, and have a condition number on the order of 104. They have
an average of 13.4 nonzero entries per row. We will consider a sequence of 150 linear
systems, both preconditioned and nonpreconditioned. We give results in section 4.1.

3.2. Electronic Structure. First-principles, electronic-structure calculations
based on the Schrödinger equation are used to predict key physical properties of
materials systems with a large number of atoms. We consider systems arising in the
KKR method [17, 16].

For an electron that is not scattered going from atom i to atom j, the Green’s
function solution is the structural Green’s function

G0(ri, rj ;E) =
ei

√
E|ri−rj |

4π|ri − rj |
,

where ri and rj are position vectors, and E is the complex energy. For an electron
scattered going from atom i to atom j, the Green’s function can be given as follows.

Gij = ti + tiGij
0 tj + tiGik

0 tkGkj
0 tj + ..., (3.1)

where each ti is a single-site scattering matrix depending only on the local potential.
In matrix notation, this recursive definition gives the following equation for G,

G = t + tG0(t + tG0t + . . .) = t + tG0G ⇔

(I − tG0)G = t, (3.2)

where t is the block-diagonal matrix with blocks ti. A localization strategy transforms
(3.2) into an equation for the Green’s function relative to a fictitious reference system
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chosen to ensure localization. This yields a sparse matrix to invert.

Gref = (I − trefG0)
−1tref ,

G = (I − (t − tref)Gref)
−1(t − tref).

The first system above can be inverted very rapidly. The second requires the inversion
of a sparse, complex, non-Hermitian matrix, where the relative number of nonzeros
in the matrix decreases with the number of atoms [15, 36, 32]. We give results in
Section 4.2, using a model problem provided by Duane Johnson (Materials Science,
UIUC) and Andrei Smirnov (Oak Ridge National Laboratory).

Only the block-diagonal elements (corresponding to local sites) are needed to
calculate physical properties. Iterative methods offer the advantage to store only those
components of the inverse (computed column-by-column) that we need. Standard
direct inversion methods are infeasible for large numbers of atoms (N ≥ 500) on
regular workstations because the memory and computational costs grow as O(N 3).
Once the electronic Green’s function is determined, one can determine important
physical properties such as charge densities, total energy, force, formation and defect
energies in terms of the Green’s function.

3.3. QCD. Quantum chromodynamics (QCD) is the fundamental theory de-
scribing the strong interaction between quarks and gluons. Numerical simulations of
QCD on a four-dimensional space-time lattice are considered the only way to solve
QCD ab initio [4, 33]. As the problem has a 12 × 12 block structure, we are often
interested in solving for 12 right hand sides related to a single lattice site. The linear
system to be solved is (I − κD)x = b with 0 ≤ κ < κc, where D is a sparse, complex,
non-Hermitian matrix representing periodic nearest neighbor coupling on the four-
dimensional space-time lattice [19]. For κ = κc the system becomes singular. The
physically interesting case is for κ close to κc; κc depends on D. We present results
in Section 4.3.

3.4. Convection Diffusion. We consider the finite difference discretization of
the partial differential equation

uxx + uyy + cux = 0,

on [0, 1] × [0, 1] with boundary conditions

u(x, 0) = u(0, y) = 0,

u(x, 1) = u(1, y) = 1.

Central differences are used, and we set the mesh width to be h = 1/41 in both
directions, which results in a 1600 × 1600 matrix. We consider the symmetric c=0
case and the nonsymmetric c=40 case. In order to study how a recycled subspace
affects convergence, we will consider the “ideal” situation for subspace recycling by
solving a linear system twice with GCRO-DR and GCROT, recycling the subspace
generated from the first run. We show results in section 4.4.

4. Numerical Results. We explore the effects of subspace recycling by com-
paring the performance of GCRO-DR and GCROT utilizing subspace recycling with
CG, GMRES, restarted GMRES, GMRES-DR, and GCROT without subspace recy-
cling. All of the examples in this section use a zero initial guess. In particular, for
the fracture mechanics problem, we solve for the incremental displacement associated
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Table 4.1

The total number of iterations required to solve 150 sequential IC(0) preconditioned linear
systems is compared. Only GCRO-DR and GCROT(recycle) exploit subspace recycling.

Method Matrix-Vector Products
GMRES(40) 27188

GMRES-DR(40,20) 14305
GCROT(40,34,30,5,1,2) 14277

CG 14162
GMRES 14142

GCROT(40,34,30,5,1,2) (recycle) 7482
GCRO-DR(40,20) (recycle) 6901

with the loading increment. In this case, using the previous solution as the initial
guess for the next system has no benefit, as the displacements are not correlated.
Both preconditioned and nonpreconditioned examples are given.

In the following sections, GMRES(m) indicates restarted GMRES with a maxi-
mum subspace of dimension m, and GMRES indicates full (not restarted) GMRES.
CG refers to the conjugate gradient method. For GMRES-DR(m, k) and GCRO-
DR(m, k), m is the maximum subspace size, and k is the number of vectors kept
between cycles. For GCROT(m, kmax, kmin, s, p1, p2), m is the maximum subspace
size over which we optimize. The maximum number of column vectors stored in Uk

and Ck (as described in section 2.3) is kmax. The argument kmin indicates the number
of column vectors retained in Uk and Ck after truncation. The argument s indicates
the dimension of the Krylov subspace from which we select p1 vectors to place in Uk.
We also include in Uk the last p2 orthogonal basis vectors generated in the Arnoldi
process. See [6, 18] for more regarding the choice of parameters. At each restart,
GMRES is run for m − kmin steps.

In comparing restarted GMRES, GCROT, GMRES-DR, and GCRO-DR, we de-
cided to make the solvers minimize over a subspace of the same dimension. An
alternative choice would be to provide the same amount of memory to each solver,
but we felt that our choice would provide a more informative comparison.

4.1. Fatigue and fracture of engineering components. In this example,
we solve a sequence of 150 symmetric positive definite linear systems. Results for
nonpreconditioned systems and preconditioned systems are given. Each matrix has
a condition number of approximately 104, before preconditioning. All solvers were
required to reduce the relative residual to 1.0e−10. The number of matrix-vector
multiplications required to solve each of these systems is shown in Figure 4.1 for full
GMRES, CG, GMRES-DR(40, 20), GCRO-DR(40,20), and GCROT(40,34,30,5,1,2),
both with and without subspace recycling. Except for GMRES and CG, all meth-
ods in Figure 4.1 minimize over a subspace of dimension 40. GMRES(40) is not
shown in Figure 4.1 because it required an order of magnitude more matrix-vector
multiplications than the other methods to converge. The results in Figure 4.2 are
for the same sequence with an incomplete Cholesky (IC(0)) preconditioner applied
to each problem. A new preconditioner was computed for each matrix, which is not
the most efficient approach. The number of matrix-vector products to solve all 150
preconditioned linear systems is given in Table 4.1.

We see in Figure 4.1 that GCRO-DR, which employs subspace recycling, requires
the fewest matrix-vector products, except for the first system in the sequence, for
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Fig. 4.3. Typical convergence curves for GCROT and GMRES-DR applied to the fracture
mechanics problem, with and without Krylov subspace recycling. The subspace recycled by GCRO-
DR converges to an invariant subspace, whereas GCROT recycles the subspace selected in the last
cycle of the previous linear system. This subspace may not be as important for the first cycle of the
next system.

which there is no recycled subspace available. For the first system, GCROT outper-
forms GCRO-DR. GCRO-DR and GCROT outperform the solvers without subspace
recycling by a significant number of matrix-vector products. Overall, GCROT (with-
out recycling) and CG show about the same convergence. Full GMRES outperforms
CG, indicating that the convergence of CG is delayed due to effects of finite-precision
arithmetic.

For the preconditioned case shown in Figure 4.2, GCRO-DR performs best, with
GCROT with subspace recycling a close second. All the other solvers cluster near
GMRES.
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Comparing GMRES-DR and GCRO-DR, we see a significant difference in conver-
gence, even though both methods focus on removing the same approximate eigenspace.
The difference is due solely to subspace recycling. With no subspace to recycle,
GCRO-DR is algebraically equivalent to GMRES-DR. The data suggests that the
eigenspace associated with the interior eigenvalues is hard to estimate accurately,
and GCRO-DR exhibits superior performance (except for the first system) because
it does not have to recompute that space with each new linear system. Deflating the
eigenspace associated with the 20 smallest eigenvalues is particularly well-suited to
these problems because the matrices are SPD, and so the convergence is determined by
the spectra. In Figure 4.3(a), we show typical convergence curves for GCRO-DR and
GCROT without preconditioning for the first linear system in a sequence, when no
subspace is available to recycle. At each cycle, GCROT continually updates the sub-
space it retains between cycles, whereas the subspace retained by GCRODR between
cycles converges to an invariant subspace. Commonly, we have observed GCROT to
outperform deflation-based solvers in the absence of Krylov subspace recycling. In
Figure 4.3(b) we show typical convergence curves for GCRO-DR and GCROT for
a later system in the sequence, when both methods use Krylov subspace recycling.
The subspace recycled by GCRO-DR is nearly invariant, and GCRO-DR shows good
convergence. The subspace retained by GCROT is the subspace that was selected in
the last cycle of the previous linear system. This subspace may not be as important
for the first cycle in the next linear system. This observation suggests that retaining
the subspace determined through optimal truncation in the first cycle of the previous
system may prove more beneficial than retaining the one determined in the last cycle
of the previous system. This remains to be explored.

4.2. Electronic Structure. We consider a small model problem that arises in
the KKR method [17, 16]. The problem involves the simulation of a cubic lattice
of 54 copper atoms (treated as inequivalent) for a complex energy point close to the
real axis. This is the key physical regime for metals and leads to problems that
converge poorly. We use 16 basis functions per atom, which leads to 864 unknowns.
The matrix has about 300, 000 nonzeros. However, for increasingly larger systems
the matrix becomes more sparse; the number of nonzeros grows roughly linearly with
the size of the matrix. We solved this problem using GCRO-DR(50,25) with subspace
recycling for 32 consecutive right hand sides. In particular, we solve for the first 32 unit
Cartesian basis vectors corresponding to the 2×16 basis functions associated with the
first two atoms. We give the convergence history for the first atom in Figure 4.4. Note
that the first two right hand sides together take about 500 iterations, the remaining
right hand sides take approximately 140 iterations each, a reduction of almost 50%.
Each right hand side for the second atom (not shown) also takes approximately 140
iterations. Although for problems of this size iterative methods are not competitive
with direct solvers, we have observed this convergence behavior for larger problems, in
particular the immediate acceleration in convergence for subsequent right hand sides.

4.3. QCD. As a model problem we use the matrix conf5.0 00l4x4.1000.mtx

downloaded from the Matrix-Market website at NIST [2]. The model problems were
submitted by Björn Medeke (Dept. of Mathematics, University of Wuppertal) [19].
For this problem we have κc = 0.20611 and we used κ = 0.202.

We solve for 12 consecutive right hand sides (the first 12 Cartesian basis vectors)
using the GCROT method with subspace recycling. The results are presented in
Figure 4.5.
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Fig. 4.4. Convergence for 16 consecutive right hand sides for a small electronic structure
problem. Each distinct curve gives the convergence for a subsequent right hand side, plotted against
the total number of matrix-vector products. The first two right hand sides together take about 500
iterations, while the remaining right hand sides take about 140 iterations each, a reduction of almost
50%.
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Fig. 4.5. Convergence for 12 consecutive right hand sides for a model QCD problem from the
NIST Matrix Market. Each distinct curve gives the convergence for a subsequent right hand side,
plotted against the total number of matrix-vector products.
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Fig. 4.6. Number of matrix-vector products vs. timestep for various solvers for the convection-
diffusion problem with c=0.

4.4. Convection Diffusion. In this example, we consider GMRES, GMRES(25),
GMRES-DR(25,10), GCRO-DR(25,10), and GCROT(25,18,15,5,1,1). To explore the
effects of subspace recycling on this example problem, we rerun GCRO-DR and
GCROT on the same linear system, and recycle the subspace from the first run.
We do this to exclude the effects of right hand sides having slightly different eigen-
vector decompositions. In a sense, this is the ideal case for subspace recycling. When
GCRO-DR keeps the same subspace between cycles as GMRES-DR, these methods
are equivalent, so we do not plot the first run of GCRO-DR. The results for the
c=40 (nonsymmetric) case are quite interesting, and counterintuitive. The results
are shown in Figure 4.6 for the c=0 (symmetric) case and Figure 4.7 for the c=40
(nonsymmetric) case. In the legend for each of these figures, “recycle” denotes the
second run of a solver that was run twice. All solvers were required to reduce the
residual to 1.0e−10.

For the c=0 case, we see that the second runs of GCRO-DR and GCROT both
converged faster than GMRES. All other solvers are, of course, slightly worse than
GMRES, with GMRES(25) being far worse. GCRO-DR and GCROT recycled a small
subspace from their first run that improved convergence significantly. For the c=40
case, GMRES and the second run of GCROT terminate in about the same number
of iterations, but the second run of GCROT had a significantly smaller residual for
almost the entire run. Only near the end, with a much larger search space, does
GMRES catch up. The second run of GCROT also does better than its first run,
indicating that it recycled a subspace useful for convergence. However, GCRO-DR
performed initially somewhat better on the second run than the first, but the overall
convergence was approximately the same for both runs. This means that the subspace
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Cosines of the principal angles between
the recycled subspace and the subspace
spanned by the 10 smallest eigenvectors

Cosines of the principal angles between
the recycled subspace and the subspace
spanned by the 21 smallest eigenvectors

c=0 c=40 c=0 c=40
1.00000000000000 1.00000000000000 1.00000000000000 1.00000000000000
1.00000000000000 0.99999999999997 1.00000000000000 1.00000000000000
1.00000000000000 0.99999999839942 1.00000000000000 1.00000000000000
1.00000000000000 0.99999970490203 1.00000000000000 0.99999999999937
0.99999999999703 0.99990149788562 1.00000000000000 0.99999999545394
0.00000000593309 0.98844658524616 1.00000000000000 0.99999681064565
0.00000000003840 0.89957454665058 0.99999999999988 0.99983896006215
0.00000000000003 0.54237185670110 0.99999999316379 0.99393007943547
0.00000000000000 0.06426938073642 0.99993817690380 0.94584519976471
0.00000000000000 0.02603228754605 0.99792215267787 0.20867650942988

Table 4.2

Cosines of principal angles between the recycled subspace and the invariant subspaces spanned
by the 10 and 21 eigenvectors associated with the eigenvalues of smallest magnitude, respectively,
for the c=0 and c=40 cases.

it recycled failed to improve convergence.

Table 4.2 shows the cosines of the principal angles between the subspace recycled
by GCRO-DR and the invariant subspace associated with the 10 and 21 eigenvalues
of smallest magnitude, respectively, for the c=0 and c=40 cases. For the comparison
with 10 eigenvectors, we see that the recycled subspace for the c=0 case only captures
5 eigenvectors. We choose to compare with the space spanned by 21 eigenvectors
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because it captures the entire recycled subspace for the c=0 case. This means that
GCRO-DR does not select the invariant subspace spanned by the eigenvectors for the
10 smallest eigenvalues, but rather selects some subspace of the space spanned by the
21 smallest. The table also shows that the approximation of an invariant subspace for
the c=40 case is nearly as good as for c=0. However, this does not lead to similar
convergence.

5. Conclusions and Future Work. We have presented an overview of Krylov
subspace recycling for sequences of linear systems where both the matrix and right
hand side change. Different choices for subspace selection and recycling have been
shown, as well as methods implementing those choices. We propose the solver GCRO-
DR to implement Krylov subspace recycling of approximate invariant subspaces for
Hermitian and non-Hermitian systems. When solving a sequence of linear systems,
methods employing Krylov subspace recycling frequently outperformed GMRES while
keeping only a small number of vectors. However, as the examples in section 4.4 show,
this is not always the case. It is not yet well understood precisely how subspace se-
lection affects convergence, so further theory is needed. Optimized minimum-residual
methods for the Hermitian case are being developed.
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Appendix. GCRO with Deflated Restarting (GCRO-DR).

1: Choose m, the maximum size of the subspace, and k, the desired number of
approximate eigenvectors. Let tol be the convergence tolerance. Choose an initial
guess x0. Compute r0 = b − Ax0, and set i = 1.

2: if Ỹk is defined (from solving a previous linear system) then

3: Let [Q,R] be the reduced QR-factorization of AỸk.
4: Ck = Q
5: Uk = ỸkR−1

6: x1 = x0 + UkCH
k r0

7: r1 = r0 − CkCH
k r0

8: else
9: v1 = r0/‖r0‖2

10: c = ‖r0‖2e1

11: Perform m steps of GMRES, solving min‖c−Hmy‖2 for y and generating Vm+1

and Hm.
12: x1 = x0 + Vmy
13: r1 = Vm+1(c − Hmy)

14: Compute the k smallest eigenvectors z̃j of (Hm + h2
m+1,mH−H

m emeH
m)z̃j = θ̃j z̃j

and store in Pk.
15: Ỹk = VmPk

16: Let [Q,R] be the reduced QR-factorization of HmPk.
17: Ck = Vm+1Q

18: Uk = ỸkR−1

19: end if
20: while ‖ri‖2 > tol do
21: i = i + 1
22: Perform m−k Arnoldi steps with the linear operator (I − CkCH

k )A, letting
v1 = ri−1/‖ri−1‖2 and generating Vm−k+1, Hm−k, and Bm−k.

23: Let Dk be a diagonal scaling matrix such that Ũk = UkDk where the columns
of Ũk have unit norm.

24: V̂m = [Ũk Vm−k]

25: Ŵm+1 = [Ck Vm−k+1]

26: Gm =

[
Dk Bm−k

0 Hm−k

]

27: Solve min‖ŴH
m+1ri−1 − Gmy‖2 for y.

28: xi = xi−1 + V̂my

29: ri = ri−1 − Ŵm+1Gmy

30: Compute the k smallest eigenvectors z̃j of G
H

mGmz̃i = θ̃iG
H

mŴH
m+1V̂mz̃i and

store in Pk.
31: Ỹk = V̂mPk

32: Let [Q,R] be the reduced QR-factorization of GmPk.

33: Ck = Ŵm+1Q

34: Uk = ỸkR−1

35: end while
36: Let Ỹk = Uk (for the next system)
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